@@ CodeBreakers Magazine

Security & Anti-Security - Attack & Defense

Self Modifying Code
by Giovanni Tropeano

Vol. 1, No. 2, 2006

Abstract:

This article takes an in depth look at self modifying code (SMC) and how you can use it in your own applications. There are examples in

C++ using inline assembly, as well as pure assembler. I also talk about executing code on the stack, which is essential to successfully write
and execute SMC.

© CodeBreakers Journal, http:/www.CodeBreakers-Journal.com

Self Modifying Code

By Giovanni Tropeano

This article takes an in depth look at self modifying code
(SMC) and how you can use it in your own applications.
There are examples in C++ using inline assembly, as
well as pure assembler. I also talk about executing code
on the stack, which is essential to successfully write and
execute SMC.

1 Preface

OKk, let's get started. This document is probably going to
be long, as I want to make sure I explain everything as
clearly as I possibly can. It's my interpretation of a
million articles and hundreds of hours of writing SMC. . .
I'll try to cram it all in here. So grab yourself a beer (or
whatever your beverage of choice may be), turn up the
tunes, and get ready to learn how to avoid the casual
crackers from wreaking havoc on your apps! Along the
way I'll teach you about Windows memory, and a few
other things you may not know.

2 Brief History of Self
Modifying Code

Back in the day, programmers had the luxury of using
self modifying code at will. MS-DOS programmers used
it at will - any serious attempt at protecting applications
a 10 or 20 years ago involved SMC (self modifying code).
Even compilers used it that compiled code into memory.

Then in the mid 90's something happened. It was called
Windows 95/NT. All of a sudden us programmers had to
think about all that shit we learned in protecting our
apps and somehow move it over to this new platform. All
the tricks we learned had to be forgotten, as we no longer
had uncontrolled access to memory, hardware, and the
general operating system itself. People started to think
that writing SMC was impossible unless you used VxD,
which Windows is notorious for not documenting well.
Then it was dicovered that we COULD still use SMC in
our apps. One of two ways would work just fine for us -
either use the WriteMemoryProcess export of Kernell32
or put the code on the stack to be modified.

The rest of this document will mostly deal with Microsoft
Visual C++ and 32bit executable code.

CodeBreakers Magazine — Vol. 1, No. 2, 2006

3 Windows Memory - How
it's put together

Creating SMC in Windows isn't as straight forward as I
would of hoped. You're going to have to deal with a few
quirks and kinks that Windows will throw your way.
Why? 'Cause it's Microsoft.

As you probably already know, Windows allocated 4 Gigs
of virtual memory for a process. To address this memory,
Windows uses two selectors. One is loaded in the CS
Segment register, and the other one is thrown into the
DS, SS, and ES registers. They all use the same base
address of memory (equal to zero) and have the same
limits of 4 Gigs.

There's only ONE segment that contains both code and
data, as well as the stack of a process. You can use a
NEAR call or a jump to control code located in the stack.
You don't have to use the SS to access the stack, either.
Although the value of the CS register is not equal to the
value of the DS, ES, and SS registers, the MOV dest,
CS:[src], MOV dest, DS:[src], and MOV dest, SS: [src]
instructions address the same memory location.

Memory areas (pages) containing data, code, and the
stack have different attributes. For instance, code pages
will allow reading and executing, data pages - reading
and writing, and the stack - reading, writing, and
executing simultaneously.

There's also some security attributes attached to each of
those, but I'll explain a bit more on that later as we need
it.

4 Using
WriteProcessMemory - New
Best Friend

The easiest way (in my opinion) to change some bytes of a
process is to use the WriteMemoryProcess (as long as
some security flags are not set).

The first thing we want to do on the memory process we
want to modify, is open it with the OpenProcess function,
with the PROCESS_VM_OPERATION and
PROCESS_VM_WRITE access attributes.

Here's a simple example of some SMC, that we will talk
about. We will need to use some inline assembly to
accomplish this in C++. This of course can be done in all
assembly, but not in this document. It's going to be long
enough!

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

Listing 1: Using WriteProcessMemory to Create SMC

int WriteMe(void *addr, int wb)
{

HANDLE
h=0OpenProcess(PROCESS_VM_OPERATION |
PROCESS_VM_WRITE,

true, GetCurrentProcessId());

return WriteProcessMemory(h, addr, &wb, 1, NULL);

}

int main(int arge, char* argvl[])
{
_asm {
push 0x74 ; JMP --> > JZ
push offset Here
call WriteMe
add esp, 8
Here: JMP short here
}
printf("Holy Sh”& OsIX, it worked! #JMP SHORT $-2
was changed to JZ $-2n");
return O;

}

As you can see, the program is replacing this infinate
jump with a valid JZ instruction. This allows the
program to continue, and we see the message telling us
the jump was changed. Cool, huh? I bet by now you are
thinking...hmmm, I wonder if I could do "this" or "that"?
Odds are, probably!

There are some drawbacks of this (the
WriteMemoryProcess). First of all, the experienced
cracker WILL recognize this in the imports table. He will
most likely set a breakpoint on this call, and then from
there step through only the code he wants to. Using
WriteProcessMemory is only reasonable in compilers that
compile into memory, or in unpackers of executable files,
but you sure CAN use it to throw off the casual cracker. I
have used this in my apps a lot.

Another thing that sucks about WriteMemoryProcess is
the inability to create new pages in memory. It only
works on existing pages. There are other ways to
accomplish this, but we'll look at executing code on the
stack as our option.

5 Putting Code on the Stack,
and executing it!

Executing code on the stack is not only possible, it is
necessary. It makes life easy on compliler so they can
generate code. But doesn't this pose a security threat?
You bet your ass it does. But there's not much you can do
as a programmer because if for instance, you were to
install a patch that don't allow code to be executed on the

CodeBreakers Magazine — Vol. 1, No. 2, 2006

stack - odds are most of your programs would not run!
Linux has such a patch, and so does Solaris, although it's
a good guess there's only like 2 people who installed them
(the authors hee hee).

Remember those drawbacks I just talked about using
WriteMemoryProcess? Well, those are overcome using
the stack to execute code for a couple of reasons. One is,
it's almost impossible for a cracker to trace the
instructions that modify an unknown memory location.
He'll have to work his butt off to analyize the protection
code, and he probably won't have much success! The
other reason executing code on the stack is a positive
thing is, at any moment, the application may allocate as
much memory for the stack as it sees fit, and then, when
it becomes unnecessary, free that space. By default, the
system allocates 1 MB of memory for the stack. If this
memory appears to be insufficient to solve the task, the
necessary quantity can be specified when the program is
configured.

There's some specific stuff you need to know about
executing stuff on the stack... so let's get to it in the next
section.

6 Why relocatable code can
be bad for your health

You have to be aware that the location of the stack is
different on Windows 9X, Windows NT, and Windows
2000. To make sure your program works when it moved
from one system to another requires it to be relocatable.
Achieving this is not hard, you just have to follow a few
simple rules - yes damn rules!

Fortunately for us, in the 80x86 world all short jumps
and near calls are relative. That means it don't use linear
addresses, but the difference between the target address
and the next instruction. This sure does simplify our life
when making relocatable code, but it also has some
restrictions.

For example, what happens if the void OSIXDemo()
{printf("Hi from OSIXn");} function is copied to the stack,
and control is passed to it? Since the address of printf
has changed, this will most likely result an error!

In assembler, we can easily fix that by using register
addressing. A relocatable call of the printf function may
look simplistic, for example LEA EAX, printfNCALL
EAX. Now the ABSOLUTE linear address, not a relative
one, will be placed in the EAX register. Now it don't
matter where it's called from, control will still be passed
to printf.

Doing such things requires that your compiler support
inline assembly. I know, this sucks if you're not

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

interested in lower level instruction code, and it CAN be
achieved using only high level languages. Here's a quick
example:

Listing 2: How a Function Is Copied to and Executed in
the Stack

void Demo(int (*_printf) (const char *,...))
{

_printf("Hello, OSIX!n");

return;

}

int main(int arge, char* argv[])
{
char buff{1000];
int (*_printf) (const char *,...);
int (*_main) (int, char **);
void (*_Demo) (int (*) (const char *,...));
_printf=printf;

int func_len = (unsigned int) _main - (unsigned int)
_Demo;

for (int a=0; a<func_len; a++)

buffla] = ((char *) _Demo)[al];

_Demo = (void (*) (int (*) (const char *,...))) &buffl0];

_Demo(_printf);
return O;

So don't let anyone tell you executing code on the stack is
not possible using a high level language.

7 1 got your optimization
right here!

You will need to really think about what compiler you are
going to use, and study some details regarding that
compiler if you plan on using SMC or executing code on
the stack. In most cases, the code of a function WILL
FAIL on the first attempt when executing on the stack,
especially if your compiler is set to "optimize".

Why does this happen? Because in pure high level
languages such as C or Pascal, it is damn near
impossible to copy the code of a function to the stack or
elsewhere. The programmer may obtain the pointer to a
function, but there's no standard on how to interpret it.
Us programmers call this, the "Magic Number" and it is
known only to the compiler.

Fortunately, almost all compilers use the same logic to
genratate code. This allows the program to make certain
assumptions about the compiled code. The programmer
also is able to make certain assumptions.

Let's take a look back at Listing 2. We assume that the

CodeBreakers Magazine — Vol. 1, No. 2, 2006

pointer to this function coincides with the beginning of
the function, and that the body is located behind the
beginning. Most compilers will use this sort of "common
sense compiling” but don't count on all of them doing
that. The big guys follow this rule though (VC++,
Borland, etc). So unless you're using some unknown or
new compiler, don't worry about it. One note about VC++:
if you are in debug mode, the compiler will insert an
"adapter” and allocate the functions somewhere else.
Damn Microsoft. But no worries, just make sure the
"Link Incrementally” box is checked in the options, and
you can force good code to be generated. If your compiler
don't have this option or something similar, you can
either NOT wuse SMC, or use another compiler!

Another problem is to determine the length of a function.
Doing this reliably is a bit of a trick, but can be done. In
C(++) the sizeof instruction doesn't return the length of
the function itself, but the size of the pointer to the
function. But as a rule, compilers allocate memory
according to the order they appear in the source code.
So... the length of the body of a function is equal to the
difference between the pointer to the function and the
pointer to the function following it. Easy! Remember
though, optimizing compilers DO NOT follow these
procedures and the method I just described will not work.
See why optimizing compilers are bad for your health if

And yet another thing that optimizing compilers will do
is delete variable that they THINK are not being used.
Going back to our example in Listing 2, something is
written to the buff buffer, but nothing is READ from that
place. Most compilers are unable to recognize that
control was passed to the buffer, so they delete the
copying code. The bastards! That's why control is passed
to the unitialized buffer, and then...boom. Crash. If this
problem arises, clear the "Global optimization" checkbox
and you'll be okay.

If your program STILL does not work, don't give up. The
reason is probable the compiler inserting the call of a
routine that monitors the stack into the end of each
function. Microsoft's VC++ does this. It places the call of
the function _ chkesp into debugged projects. Don't
bother looking it up in the documentation - there is none
- imagine that! This call is relative, and there is no way
of disabling it. However, in your final project, VC++
doesn't inspect the state of the stack when exiting a
function, and stuff will work smoothly.

8 Using SMC in your own
apps

Ok finally here - the section you have all been wanting to

get to. If you have made it this far, I applaud you. (clap
clap)

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

Ok, by now you may be asking yourself (or asking me)
"What's the benefit of executing code (a function) on the
stack?" And the answer is (drumroll please...) The code of
a function on the stack can be changed on the fly, at will -
such as decrypting! And the crowd says
Ahhhhhhhhhhhhhhh.

The encrypted code makes it a pain in the ass for the
cracker to disassemble. Of course, with a debugger this
gets a little easier, but still makes his/her life difficult.

The simplest encrypting algorithm will sequentiall
process each line of code using the exclusive OR
operation (XOR). And running this again will produce
our original code!

Here's an example that reads the contents of our DEMO

function, encrpypts it, and writes the results into a file.

Listing 3: How to Encrypt the Demo Function

void _bild()
{
FILE *f;
char buff[1000];
void (*_Demo) (int (*) (const char *,...));
void (*_Bild) ();
_Demo=Demo;
_Bild=_hild;

int func_len = (unsigned int) _Bild - (unsigned int)
_Demo;

f=fopen("Demo32.bin", "wb");

for (int a=0; a<func_len; a++)

fpute(((int) buffla]) A 0x77, f);

felose(f);

After it has been encrypted, the contents are then placed
into a string variable. Now the Demo function can be
removed from the initial code. Then when we need it, it
may be decrypted, copied into the local buffer, and called
for execution! Kick ass huh?

Here's an example of how we would impliment that:

Listing 4: The Encrypted Program

int main(int argc, char* argvl])
{

char buff[1000];

int (*_printf) (const char #,...);

void (*_Demo) (int (*) (const char *,...));

char code[]="x22xFCx9BxF4x9Bx67xB1x32x87
x3FxB1x32x86x12xB1x32x85x1BxB1
x32x84x1BxB1x32x83x18xB1x32x82
x5BxB1x32x81x57xB1x32x80x20xB1

CodeBreakers Magazine — Vol. 1, No. 2, 2006

x32x8Fx18xB1x32x8Ex05xB1x32x8D
x1BxB1x32x8Cx13xB1x32x8Bx56xB1
x32x8Ax7DxB1x32x89x77xFAx32x87
x27x88x22x7TFxF4xB3x73xFCx92x2A
xB4";

_printf=printf;
int code_size=strlen(&code[0]);
strepy(&buffl0], &code[0]);

for (int a=0; a<code_size; a++)

buffla] = buffla] A 0x77,

_Demo = (void (*) (int (*) (const char *,...))) &buffl0];
_Demo(_printf);

return 0;

Note that the printf function displays a greeting. At first
glance you may not notice anything unusual, but look at
where the string "Hello, OSIX!" is located. It should not
be in the code segment (Borland puts it there for some
reason) - therefore check the data segment and you will
see it - right where it ought to be!

Now, even if the cracker is looking at the source code, it's
still going to be one hell of a puzzle! I use this method to
conceal "secret" information all the time (serial number,
ken generators for my programs, etc).

If you are going to use this method to verify a serial
number, the verification method should be organized so
that even when decrpyted, it will still puzzle the cracker.
I'll show you such an example in the next listing.

Remember, when implimenting SMC you need to know
the EXACT location of the bytes you are trying to change.
Therefore, an assembler should be used instead of a high
level language. C'mon, stay with me, we are almost done!

There is one problem connected with using assembler to
do this - do change a certain byte the MOV instruction
needs to be passed the ABSOLUTE linear address (which
you have probably already figured out is UNKNOWN
before compiling). BUT.. we can find this info out in the
course of running the program. The CALL $+5POP
REGMOV [reg+relative_address], xx statement has
gained the greatest popularity with me. It
works.Inserted as the following statement, it executes
the CALL instruction, and pops the return address from
the stack (or the absolute address of this instruction).
This is used as a base for addressing the code of the stack
function.

And now that example on the serial numbers I promised
you...

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

CodeBreakers Magazine — Vol. 1, No. 2, 2006

Listing 5: Generates a Serial Number and Runs in the
Stack

MyFunc:

push esi ; Saving the esi register on the stack

mov esi, [esp+8] ; ESI = &username|0]

push ebx ; Saving other registers on the stack
push ecx

push edx

XOr eax, eax ; Zeroing working registers

xor edx, edx

RepeatString: ; Byte-by-byte string-processing loop

lodsb ; Reading the next byte into AL
test al, al ; Has the end of the string been reached?
jz short Exit

; The value of the counter that processes 1 byte of the
string

; must be choosen so that all bits are intermixed, but
parity

; (oddness) is provided for the result of transformations
; performed by the XOR operation.

mov ecx, 21h

RepeatChar:

xor edx, eax ; Repeatedly replacing XOR with ADC
ror eax, 3

rol edx, 5

call $+5 ; EBX = EIP

pop ebx ; /

xor byte ptr [ebx-0Dh], 26h;

; This instruction provides for the loop.

; The XOR instruction is replaced with ADC.
loop RepeatChar

jmp short RepeatString

Exit:

xchg eax, edx ; The result of work (ser.num) in EAX
pop edx ; Restoring the registers

pop ecx

pop ebx

pop esi

retn ; Returning from the function

This algorithm is kinda weird - because repeatedly
calling a function and passing it the same arguments
may return either the same or a completely different
result! It depends upon the length of the username. If it
is odd, XOR is replaced with ADC when the function is
exited. If it's even,nothing similar happens!

Well...that's it for now. I hope you at least learned a little
something from this document. Took me over 2 hours to
type! Feedback is always welcome.

Take care, and I'd be glad to have a look at any SMC code
you may send my way!

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

	Self Modifying Code
	 1 Preface
	 2 Brief History of Self Modifying Code
	 3 Windows Memory - How it's put together
	 4 Using WriteProcessMemory - New Best Friend
	 5 Putting Code on the Stack, and executing it!
	 6 Why relocatable code can be bad for your health
	 7 I got your optimization right here!
	 8 Using SMC in your own apps

